

Brief Summarization

Table of Contents

Objectives	1
Introduction	1
RAM Technologies	1
RAM (random access memory)	1
ROM (read-only memory)	1
Reviewing other salient features of RAM	1
SIMM Technologies	3
DIMM Technologies	4
DIMM (dual inline memory module)	4
Synchronous DRAM (SDRAM)	4
DDR (Double Data Rate) and DDR2 DIMM	4
Buffered and registered DIMMs	4
Dual channeling	4
RIMM Technologies	5
Direct Rambus DRAM (RDRAM or Direct RDRAM)	5
C-RIMM (Continuity RIMM): placeholder module	6
Error Checking and Parity	6
CAS Latency and RAS Latency	6
Tin or Gold Leads	7
Memory Speeds	7
How to Upgrade Memory	7
Problems solved with new memory:	8
How Much and What Kind of Memory to Buy	8
Questions to ask before performing an upgrade:	8
Installing Memory	9
Installing SIMMs	9
Installing RIMMs	q

Installing DIMMs	10
Troubleshooting Memory	11
Common problems:	11
General Protection Fault (GPF) errors	11
Dealing with unrecognized add-on or error message	11
Recurring Problems	12
Symptoms of an unreliable memory:	12
Some troubleshooting tasks	12
Summary	12

Objectives

- Learn about the different kinds of physical memory and how they work
- Learn how to upgrade memory
- Learn how to troubleshoot problems with memory

Introduction

- Memory technologies have evolved rapidly
- Study development to grasp current technology
- Memory-related tasks performed by a PC technician
 - Upgrading memory
 - Adding more memory to a system
 - Troubleshooting problems with memory

RAM Technologies

RAM (random access memory)

- Holds data and instructions used by CPU
- Volatile (data does not persist after PC is turned off)

ROM (read-only memory)

- In firmware on motherboard; e.g., ROM BIOS
- Non-volatile (retains data after PC is turned off)

Reviewing other salient features of RAM

- RAM is stored in modules: DIMMs, RIMMs, SIMMs
- Types: static RAM (SRAM) and dynamic RAM (DRAM)
- Memory cache is made up of SRAM (it is faster)

Figure 6-1 DRAM on most motherboards today is stored on DIMMs

- Differences among DIMM, RIMM, and SIMM modules
 - Width of the data path each module accommodates
 - The way data moves from system bus to the module
- Older DRAM worked asynchronously with system bus
- Newer DRAM works synchronously with system bus
 - Retrieves data faster as it keeps time with system clock
- Goal of each new technology
 - Increase overall throughput while retaining accuracy

Figure 6-2 Types of memory modules

SIMM Technologies

- SIMMS have a 32-bit data path
- Speeds (access times): 60, 70, 80 nanoseconds (ns)
 - Smaller number indicates greater speed
- Components making up the access time
 - Processor requests the data
 - Memory controller locates data on the SIMM
 - Data is placed on the memory bus
 - The processor reads the data off the bus
 - Memory controller refreshes memory chip on SIMM

DIMM Technologies

DIMM (dual inline memory module)

- Has independent pins on opposite sides of module
- Can have memory chips on one or two sides
- Has 168, 184, or 240 pins on edge connector
- Has a 64-bit data path and holds 8 MB 2 GB RAM

Synchronous DRAM (SDRAM)

Has two notches, and uses 168 pins

DDR (Double Data Rate) and DDR2 DIMM

- DDR SDRAM runs 2 x faster than regular SDRAM
- DDR2 SDRAM is faster than DDR, uses less power

Buffered and registered DIMMs

- Hold data and amplify a signal before data is written
- Unbuffered DIMM: no support of buffers or registers
- SDRAM modules use registers
- FB-DIMM is fully buffered
- Notches on module indicate supported technologies

Dual channeling

- Controller communicates with 2 DIMMs at same time
- Example: two 64-bit DIMMs form 128-bit data path
- DIMM pairs must have same size, speed, features

Figure 6-3 The positions of two notches on a SDRAM DIMM identify the type of DIMM and the voltage requirement and also prevent the wrong type from being installed on the motherboard

Figure 6-4 Using dual channels, the memory controller can read from two DIMMs at the same time

RIMM Technologies

Direct Rambus DRAM (RDRAM or Direct RDRAM)

- · Uses RIMM memory modules
- Expensive and slower than current DIMMs

C-RIMM (Continuity RIMM): placeholder module

- Concurrent RDRAM: not as fast as Direct RDRAM
- · Rambus does not actually make RIMMs
 - Licenses technology to memory manufacturers

Error Checking and Parity

- Bank: smallest group of working memory chips
 - Example: eight memory chips used in 8-bit data path
- Parity: error-checking based on an extra (ninth) bit
 - Odd parity: parity bit is set to make odd number of ones
 - Even parity: parity bit set to make even number of ones
- · Parity error: number of bits conflicts with parity used
 - Example: odd number of bits read in even parity system
- ECC (error-correcting code)
 - Detects and corrects an error in a single bit
 - Application: ECC makes 64-bit DIMM a 72-bit module

Figure 6-6 Eight chips and a parity chip hold nine bits that represent the letter A in ASCII with even parity

CAS Latency and RAS Latency

- · Two ways of measuring speed
- · CAS stands for "column access strobe"
- RAS stands for "row access strobe"

- · Both types measure read/write clock cycles
 - Two or three clock cycles per column or row of data
- CAS latency is used more than RAS latency

Tin or Gold Leads

- · Connectors inside memory slots are tin or gold
 - Edge connectors on memory modules follow suit
- Tin leads should match tin connectors
- · Gold leads should match gold connectors
 - Prevents corrosive chemical reactions between metals

Memory Speeds

- Measures: ns, MHz, PC rating, CAS or RAS Latency
 - Example: SDRAM, DDR, and RIMM measured in MHz
- PC rating: total bandwidth between module and CPU
 - Example: 200 MHz x 8 bytes = 1600 MB/sec = PC1600
- Factors to consider when looking at overall speed:
 - How much RAM is installed and the technology used
 - Speed of memory in ns, MHz, or PC rating
 - ECC/parity or non-ECC/nonparity
 - CL or RL rating
 - Use of dual channeling

How to Upgrade Memory

The basic technique: add more RAM modules

Problems solved with new memory:

- Slow performance
- Applications refusing to load
- An unstable system
- Note empty memory slots on most new computers
 - Accommodate new DIMM or RIMM

How Much and What Kind of Memory to Buy

Questions to ask before performing an upgrade:

- How much memory do I need?
- How much RAM is currently installed in my system?
- How many memory modules are currently installed?
- What kind of memory modules are currently installed?
- How much memory can I fit on my motherboard?
- What kind of memory can I fit on my motherboard?
- How do I select and purchase the right memory?
- Refer to system utilities to determine capacity
- Motherboard documentation guides choice of add-ons

Bank 1	Bank 2	Bank 3	Bank 4	Slots
Single-sided DIMM				1
Double-sided DIMM				1
Single-sided DIMM	Single-sided DIMM			2
Single-sided DIMM	Single-sided DIMM	Single-sided DIMM		3
Double-sided DIMM		Single-sided DIMM		2
Double-sided DIMM		Double-sided	DIMM	2
Double-sided DIMM		Single-sided DIMM	Single-sided DIMM	3

Figure 6-14 How three DIMM slots can use four 64-bit memory banks supported by a motherboard chipset

Installing Memory

- Follow safety procedures when installing RAM
 - Example: always use a ground bracelet as you work

Installing SIMMs

- Module slides into slot at an angle
- Make sure each module is secured to slot
- Verify that POST memory count includes new module

Installing RIMMs

- Install modules in this order: bank 0, bank 1
- Remove the C-RIMM (placeholder) filling the slot
- Use notches to help orient module in the socket

Figure 6-18 Installing a SIMM module

Figure 6-19 Install RIMM modules in banks beginning with bank 0

Installing DIMMs

- Pull out the supporting arms on the sides of the slot
- Use notches on the DIMM edge connector as a guide
- Insert the DIMM straight down into the slot
- Ensure that supporting arms lock into position
- · New installations are generally uncomplicated
 - Usually involves just placing memory on motherboard
- Older computers may need change to CMOS setup
- If new memory not recognized, try reseating device

Figure 6-20 Installing a DIMM module

Troubleshooting Memory

Common problems:

- Boot failure
- A system that hangs, freezes, or becomes unstable
- Intermittent application errors

General Protection Fault (GPF) errors

- · Caused by memory errors in Windows
- Upgrade Problems

Dealing with unrecognized add-on or error message

- · Remove and reinstall the module
- · Check for the suitability of the module for the board
- Ensure that the module is the correct size
- Remove the module and check for error message
- · Test the module in another socket
- Clean the module edge connectors
- Try flashing BIOS

Recurring Problems

Symptoms of an unreliable memory:

- · The system locks up
- Error messages about illegal operations often display
- General Protection Faults occur during normal operation

Some troubleshooting tasks

- · Run updated antivirus software to check for viruses
- · Replace memory modules one at a time
- · Try uninstalling the new hardware
- Test, reseat, or replace RAM
- Verify that virtual memory settings are optimized

Summary

- RAM categories: static RAM (SRAM), dynamic RAM (dRAM)
- Modules used to store DRAM: SIMM, DIMM, RIMM
- Synchronous DRAM (SDRAM): moves to the beat of the system clock
- Simple parity checks identify one corrupted bit
- Error correcting code (ECC) detects and corrects one flipped bit
- Memory speeds are measured in ns, MHz, PC rating, CAS or RAS Latency
- When upgrading memory, use the type, size, and speed the motherboard supports
- New modules should match those already installed
- Install new modules by inserting them into the appropriate slots
- When troubleshooting, first try the simple technique of reseating the module

******All images and text are property of Cengage, Thomson, and Jean Andrews******

Get more at: http://the-computer-wizard.tripod.com

Comp Wiz

the_comp_wiz

